Part Number Hot Search : 
RC1206 16808 5KP14 SCL4070 054S35PR S30VTA80 FR120 32402
Product Description
Full Text Search
 

To Download MOC8100-M Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  
    the moc8100 device consists of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon phototransistor detector . it is designed for applications requiring higher output collector current ( i c ) with lower input drive current ( i f ). ? current transfer ratio guaranteed to be > 50% at 1 ma led drive level ? t o o r d e r d e v i c e s t h a t a r e t e s t e d a n d m a r k e d p e r v d e 0 8 8 4 r e q u i r e m e n t s , t h e s uf fix ovo must be included at end of part number . vde 0884 is a test option. applications ? appliances, measuring instruments ? general purpose switching circuits ? programmable controllers ? portable electronics ? interfacing and coupling systems of different potentials and impedances ? low power logic circuits ? telecommunications equipment maximum ratings (t a = 25 c unless otherwise noted) rating symbol value unit input led reverse voltage v r 6 volts forward current e continuous i f 60 ma led power dissipation @ t a = 25 c with negligible power in output detector derate above 25 c p d 120 1.41 mw mw/ c output transistor collectoremitter voltage v ceo 30 volts emitterbase voltage v ebo 7 volts collectorbase voltage v cbo 70 volts collector current e continuous i c 150 ma detector power dissipation @ t a = 25 c with negligible power in input led derate above 25 c p d 150 1.76 mw mw/ c total device isolation surge voltage (1) (peak ac voltage, 60 hz, 1 sec duration) v iso 7500 vac(pk) total device power dissipation @ t a = 25 c derate above 25 c p d 250 2.94 mw mw/ c ambient operating t emperature rang t a 55 to +100 c storage t emperature rang e t stg 55 to +150 c soldering temperature (10 sec, 1/16 from case) t l 260 c 1. isolation surge voltage is an internal device dielectric breakdown rating. 1. for this test, pins 1 and 2 are common, and pins 4, 5 and 6 are common.
electrical characteristics (t a = 25 c unless otherwise noted) (1) characteristic symbol min typ (1) max unit input led forward voltage (i f = 10 ma) t a = 070 c t a = 55 c t a = 100 c v f e e e 1.15 1.3 1.05 1.4 e e volts reverse leakage current (v r = 6 v) i r e 0.05 10 m a capacitance (v = 0 v, f = 1 mhz) c j e 18 e pf output transistor collectoremitter dark current (v ce = 5 v, t a = 25 c) i ceo e 3 25 na (v ce = 5 v, t a = 25 c) ceo (v cb = 30 v, t a = 70 c) i ceo e 0.05 50 m a collectorbase dark current (v cb = 5 v) i cbo e 0.2 10 na collectoremitter breakdown voltage (i c = 1 ma) v (br)ceo 30 45 e volts collectorbase breakdown voltage (i c = 100 m a) v (br)cbo 70 100 e volts emitterbase breakdown voltage (i e = 100 m a) v (br)ebo 7 7.8 e volts dc current gain (i c = 1 ma, v ce = 5 v) (typical value) h fe e 600 e e collectoremitter capacitance (f = 1 mhz, v ce = 0) c ce e 7 e pf collectorbase capacitance (f = 1 mhz, v cb = 0) c cb e 19 e pf emitterbase capacitance (f = 1 mhz, v eb = 0) c eb e 9 e pf coupled output collector current (i f = 1 ma, v ce = 5 v) (i f = 1 ma, v ce = 5 v, t a = 0 to +70 c) i c (ctr) (2) 0.5 (50) 0.3 (30) 1 (100) 0.6 (60) e e ma (%) collectoremitter saturation voltage (i c = 100 m a, i f = 1 ma) v ce(sat) e 0.22 0.5 volts turnon time (i c = 2 ma, v cc = 10 v, r l = 100 w ) (3) t on e 9 20 m s turnoff time (i c = 2 ma, v cc = 10 v, r l = 100 w ) (3) t off e 7 20 m s rise time (i c = 2 ma, v cc = 10 v, r l = 100 w ) (3) t r e 3.8 e m s fall time (i c = 2 ma, v cc = 10 v, r l = 100 w ) (3) t f e 5.6 e m s isolation voltage (f = 60 hz, t = 1 sec) (4) v iso 7500 e e vac(pk) isolation resistance (v = 500 v) (4) r iso 10 11 e e w isolation capacitance (v = 0 v, f = 1 mhz) (4) c iso e 0.2 2 pf 1. always design to the specified minimum/maximum electrical limits (where applicable). 2. current transfer ratio (ctr) = i c /i f x 100%. 3. for test circuit setup and waveforms, refer to figure 1 1. 4. for this test, pins 1 and 2 are common, and pins 4, 5 and 6 are common. mo c 81 00
typical characteristics figure 1. led forward voltage versus forward current 2 1.8 1.6 1.4 1.2 1 1 10 100 1000 i f , led forward current (ma) v f , forward voltage (volts) 25 c 100 c t a = 55 c figure 2. output current versus input current pulse only pulse or dc 10 7 5 2 1 0.7 0.5 0.2 0.1 60 40 20 0 20 40 60 80 100 t a , ambient temperature ( c) i c , output collector current (normalized) 1 10 100 0.1 0 20 40 60 80 100 t a , ambient temperature ( c) t, time ( s) i 100 50 20 10 5 2 1 0.1 0.2 0.5 1 2 5 10 20 50 100 i f , led input current (ma) ceo , collectoremitter dark current (normalized) m normalized to: v ce = 10 v t a = 25 c v ce = 30 v 10 v v cc = 10 v t f t r t r t f normalized to t a = 25 c i f = 10 ma 0 v ce , collectoremitter voltage (volts) i c , collector current (ma) 4 8 12 16 20 24 28 5 ma 2 ma 1 ma 0 1 2 3 4 5 6 7 8 9 10 figure 3. collector current versus collectoremitter voltage figure 4. output current versus ambient temperature figure 5. dark current versus ambient temperature figure 6. rise and fall times (typical values) r l = 100 { r l = 1000 { c i f , led input current (ma) 5210.50.20.10.05 0.1 1 10 0.001 i , output collector current (normalized) normalized to: i f = 1 ma mo c 81 00
t , turnoff time ( s) off m t , turnon time ( s) on m 100 70 50 20 10 7 5 2 1 0.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70 100 i f , led input current (ma) r l = 1000 v cc = 10 v 100 10 100 70 50 20 10 7 5 2 1 0.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70 100 i f , led input current (ma) r l = 1000 v cc = 10 v 100 10 figure 7. turnon switching times figure 8. turnoff switching times c, capacitance (pf) figure 9. dc current gain (detector only) figure 10. capacitances versus voltage 20 18 16 14 12 10 8 6 4 2 0 c ce f = 1 mhz 0.05 0.1 0.2 0.5 1 2 5 10 20 50 v, voltage (volts) c led c cb c eb 5 m a 4 m a 3 m a 2 m a 1 m a 4 3 2 1 0 2 4 6 8 10 12 14 16 18 20 v ce , collectoremitter voltage (volts) i c , typical collector current (ma) i f = 0 6 m a test circuit v cc = 10 v input r l = 100 w output waveforms 10% 90% t on input pulse output pulse t f t off t r figure 11. switching time test circuit and waveforms input current adjusted to achieve i c = 2 ma. i c i b = 7 m a mo c 81 00
package dimensions th ru h ol e notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension l to center of lead when formed parallel. 6 4 1 3 a b seating plane t 4 pl f k c n g 6 pl d 6 pl e m a m 0.13 (0.005) b m t l m 6 pl j m b m 0.13 (0.005) a m t dim min max min max millimetersinches a 0.320 0.350 8.13 8.89 b 0.240 0.260 6.10 6.60 c 0.115 0.200 2.93 5.08 d 0.016 0.020 0.41 0.50 e 0.040 0.070 1.02 1.77 f 0.010 0.014 0.25 0.36 g 0.100 bsc 2.54 bsc j 0.008 0.012 0.21 0.30 k 0.100 0.150 2.54 3.81 l 0.300 bsc 7.62 bsc m 0 15 0 15 n 0.015 0.100 0.38 2.54     style 1: pin 1. anode 2. cathode 3. nc 4. emitter 5. collector 6. base s urf ac e mo un t a b  seating plane t j k l 6 pl m b m 0.13 (0.005) a m t c d 6 pl m a m 0.13 (0.005) b m t h g e 6 pl f 4 pl 31 46 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. dim min max min max millimetersinches a 0.320 0.350 8.13 8.89 b 0.240 0.260 6.10 6.60 c 0.115 0.200 2.93 5.08 d 0.016 0.020 0.41 0.50 e 0.040 0.070 1.02 1.77 f 0.010 0.014 0.25 0.36 g 0.100 bsc 2.54 bsc h 0.020 0.025 0.51 0.63 j 0.008 0.012 0.20 0.30 k 0.006 0.035 0.16 0.88 l 0.320 bsc 8.13 bsc s 0.332 0.390 8.43 9.90 mo c 81 00
notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension l to center of lead when formed parallel. 0. 4" le ad sp ac in g 6 4 1 3 a b n c k g f 4 pl seating d 6 pl e 6 pl plane t m a m 0.13 (0.005) b m t l j dim min max min max millimetersinches a 0.320 0.350 8.13 8.89 b 0.240 0.260 6.10 6.60 c 0.115 0.200 2.93 5.08 d 0.016 0.020 0.41 0.50 e 0.040 0.070 1.02 1.77 f 0.010 0.014 0.25 0.36 g 0.100 bsc 2.54 bsc j 0.008 0.012 0.21 0.30 k 0.100 0.150 2.54 3.81 l 0.400 0.425 10.16 10.80 n 0.015 0.040 0.38 1.02 mo c 81 00
life support policy fairchilds products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of fairchild semiconductor corporation. as used herein: 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. a critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. disclaimer fairchild semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. fairchild does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. www.fairchildsemi.com ? 2000 fairchild semiconductor corporation


▲Up To Search▲   

 
Price & Availability of MOC8100-M

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X